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A density-functional theory for the isotropic-nematic phase transition in fluids of rigid or semiflexible fused
hard-sphere chains, developed previously by the authors, is extended to diblock chains each consisting of both
a rigid and a flexible part. The theory is compared with recent Monte Carlo simulation results of McBrideet
al. The theoretical results for the variation of pressure and nematic order parameter with density agree well
with the simulation data over density ranges where the simulations find isotropic and nematic phases.
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In recent years, the system of hard-sphere chains has been
widely studied as a coarse-grained model for polyatomic mo-
lecular fluids, including polymers. Many of these theoretical
studies have been based on methods such as Wertheim’s ther-
modynamic perturbation theory(TPT) [1,2] and generalized
Flory dimer theory[4,3], which are limited to describing
uniform isotropic fluid phases. Several density-functional
methods[5–10] have been developed to extend these treat-
ments to nonuniform and/or liquid-crystalline systems. In-
creasingly, computer simulation methods[7,8] have also
been used to study the structure, thermodynamics, and inter-
facial behavior of hard-sphere chain fluids. The majority of
these studies have focused ontangenthard-sphere chains,
where the bond lengthl (i.e., distance between adjacent
spheres) equals the hard-sphere diameterd. Until quite re-
cently, the only computer-simulation study of liquid-crystal
formation infusedhard-sphere chain fluids, wherel ,d, was
that of Whittle and Masters[11]. Subsequently, McBrideet
al. [12,13] have simulated several fused-sphere models to
determine their liquid-crystalline and solid phases. A related
study of a soft-repulsive-sphere chain fluid has been de-
scribed by Tianet al. [14].

In previous work[6], we developed a density-functional
theory for the nematic-isotropic phase transition in fluids of
both rigid and semiflexible hard-sphere chains. While the
results of the theory compared well with simulation data
[7,8] for tangent hard-sphere chains, we found lesser agree-
ment with the simulation results of Whittle and Masters[11]
for fused-sphere chains, especially for the variation of pres-
sure with density. Hence it is worthwhile to compare the
theory of Ref.[6] with the more recent simulation results of
McBride et al. [12,13]. The fused-sphere system with arbi-
trary l /d is more general than the tangent-sphere system
studied in most previous work, as it allows for variation in
the degree of convexity of the molecules[13] and more ac-
curately models the chemical structure(in terms of bond
lengths) of polyatomic molecules[2]. Aside from work of
Varga and Szalai[15], which was restricted torigid linear
molecules, we are not aware of any other density-functional

studies of liquid-crystal formation in systems of fused hard-
sphere chains. Here, following McBrideet al. [12,13], we
also examine fluids ofdiblock fused-sphere chains, where
each molecule consists of both a rigid and a flexible part,
which more realistically model typical mesogenic molecules.

The theory[6], currently restricted to spatially uniform
systems, accounts for nonideal contributions to the Helm-
holtz free energy, resulting from intermolecular repulsive in-
teractions, by means of scaled-particle theory[16,17]. We
refer the reader to Ref.[6] for most of the details, but will
point out that a fundamental quantity involved is the ex-
cluded volume between two molecules. For rigid linear mol-
ecules consisting of fused hard spheres, this is given analyti-
cally [18] by the generalization of a result first derived for
tangent-sphere chains by Williamson and Jackson[19]. It
was shown in Ref.[6] that the orientation-dependent ex-
cluded volume for rigid chains could be expressed as the
mean excluded volume of an appropriate “binary mixture” of
hard-sphere monomers and dimers. For semiflexible chains,
the key approximation made in Ref.[6] is that the excluded
volume between two chains can be analogously expressed in
terms of monomer and dimer contributions. This feature is
similar to that occurring in the self-consistent field theory of
Khokhlov and Semenov[20,21] for wormlike chains, which
decomposes a polymer into linear submolecules of cylindri-
cal shape. Calculations based on the theory involve solving a
nonlinear self-consistency equation for the chain-averaged
distribution function of dimer orientations(which is equiva-
lent to the orientation distribution function of the whole mol-
ecule when the latter is rigid). In the case of semiflexible
chains, the solution of the self-consistency equation entails
additional statistical averaging over all single-chain confor-
mations. In practice, this averaging is done by partial enu-
meration over a large numbers106−107d of self-avoiding
chain conformations, similar to other work[10]. The particu-
lar diblock models simulated in Refs.[12,13] consist of
chains containing a total ofn=15 hard-sphere monomers, all
with the same diameterd and interatomic spacingl, of which
a variable numbernr at one end of the chain are fixed in a
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rigid linear configuration while the remainingnf =n−nr
monomers form a flexible tail. To apply the theory to these
cases, the only modification required in the calculations is in
accounting for the chain structure during the enumeration
stage, which is done simply by constraining the firstnr
monomers in the chain to lie in the same(random) orienta-
tion. Finally we remark that, due to its restriction to uniform
systems, the theory in its present form is unable to account
for smectic or crystalline phases.

The first cases examined here are completely rigid mol-
ecules consisting of 11 and 15 hard-sphere monomers fused
in a linear configuration with a reduced bond lengthl*

; l /d=0.6. Figures 1(a) and 1(b) show the variation of the
reduced pressurep* ;pd3/ skBTd and nematic order param-
eter S2 with volume fractionh;rv, respectively, for the
15-monomer chains. Herep is the pressure,r is the chain
number density,v is the volume of a chain molecule, and
S2=kP2scosudl, where P2 is the second Legendre polyno-
mial andu is the angle between the molecular axis and the
nematic director. The solid curves show the results of the
present theory, while the various symbols are the results of
several different simulation runs performed in Refs.[12,13],
which are explained in the legends and captions to the fig-
ures(see also Ref.[22]). The isotropic, nematic, and smectic
phases identified in the simulations are distinguished by
white, gray-filled, and black-filled symbols, respectively.

Overall, we see close agreement between theory and simula-
tion for the behavior of the isotropic and nematic phases.
Note that there is considerable uncertainty in the simulated
values ofS2, highlighted by the nonzero values of this quan-
tity in the isotropic phase. The agreement between theory
and simulation for the pressure in the nematic phase is ap-
parently much better than we found in Ref.[6], comparing
the theory with earlier simulations of Whittle and Masters
[11] for eight-sphere chains withl* =0.6. In that comparison,
the theoretical values ofp* deviated increasingly from the
simulation results with increasingh, in a manner similar to
that seen here in Fig. 1(a) where the simulations indicate the
presence of a smectic-A phase. There was some indication
that the simulated liquid-crystalline phase in Ref.[11] may
have been smectic, which could account for the discrepancy
between the theory and simulation results in that case. Com-
parisons between the present theory and simulations of the
11-monomer chains studied in Ref.[12] are of similar qual-
ity to those in Figs. 1(a) and 1(b) and are omitted here.

The theoretical values ofS2, p* , and coexisting values of
h at the isotropic-nematic transition for all models studied in
this paper are listed in Table I. The precise locations of the
phase transition were not determined in the simulations
[12,13], due to the absence of free-energy calculations, but
the graphs suggest that there is fairly close agreement with
the present theoretical results.

Next we examine the diblock models studied in Refs.
[12,13], where snr ,nfd take the values
(13,2),(11,4),(10,5),(9,6), and (8,7). In those models, there
are no bond bending or torsional potentials between the
monomers on the flexible tails, so the latter may adopt any
conformation which is free of intramolecular and intermo-
lecular overlap. As mentioned in Ref.[12], the reduced bond
lengthl* =0.6 does impose a maximum bond angle between a
flexible bond and the previous bond of 67.11°. The order
parameterS2 for these models is defined as earlier, whereu is
now the angle between the nematic director and a suitable
“molecular axis.” As in Ref.[12], we take the latter to be the
eigenvector corresponding to the smallest eigenvalue of the
molecular inertial tensor.

Table I indicates that the values of the coexisting densities
at the transition increase, while the differences between these
densities as well as the values ofS2 at the transition decrease
with increasing length of the flexible tail. The detailed com-

FIG. 1. Reduced pressure(a) and nematic order parameter(b) vs
volume fraction for rigid 15-sphere chains. Simulation data from
Refs.[12,13] are shown by white, gray-filled, and black-filled sym-
bols, representing isotropic, nematic, and smectic phases,
respectively[22].

TABLE I. Results of present theory for the nematic-isotropic
coexistence properties:nr andnf refer to the number of monomers
in the rigid and flexible parts of the chains, respectively.

nr ,nf h (iso) h (nem) S2 p*

11,0 0.306 0.327 0.712 0.739

15,0 0.245 0.266 0.724 0.341

13,2 0.286 0.301 0.672 0.536

11,4 0.342 0.353 0.634 0.963

10,5 0.374 0.383 0.608 1.328

9,6 0.409 0.417 0.592 1.872

8,7 0.446 0.453 0.581 2.672
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parisons between theory and simulation results forS2 andp*

in the s13,2d case are similar to those in Figs. 1(a) and 1(b)
and are omitted here. McBrideet al. [12] concluded that the
s8,7d case does not exhibit any liquid-crystalline phases for
volume fractions as large as 0.48, where the behavior is
found to be glassy, whereas the theory(see Table I) predicts
an isotropic-nematic transition ath<0.45.

In the remainder we focus on the two intermediate cases
s11,4d ands10,5d. The variations ofp* andS2 with volume
fraction for thes11,4d case are shown in Figs. 2(a) and 2(b),
respectively. In Fig. 2(a) we also include, as in Refs.[12,13],
comparison with the pressure given by the modified TPT1
theory of Zhouet al. [2]. This theory only applies to the
isotropic phase and, like the present theory[6], yields results
in that phase which do not depend on molecular flexibility
and hence for a givenn=nr +nf are independent of the rela-
tive values ofnr andnf. Both theories agree well with each
other and with the simulation data in the isotropic phase for
p* , while the present theory predictsp* in the nematic phase
to be also in good agreement with simulation. The theoretical
values of the pressure deviate from the simulation values
where the latter indicate a smectic phase, similar to that seen
earlier in Fig. 1(a). Both Figs. 2(a) and 2(b) suggest that the
theory slightly underestimates the isotropic-nematic transi-
tion density. Note again that there is considerable spread, as
well as significant “noise”(in the isotropic phase), in theS2
values determined by simulation.

Comparisons of theory and simulation results for the
s10,5d case are shown in Figs. 3(a) and 3(b). The present

theory predicts that the nematic phase becomes stable at vol-
ume fractionh=0.383 (see Table I). This finding and our
results for the variation of pressure in Fig. 3(a) are in good
agreement with the original compression runs of McBrideet
al. [12], which indicated that the nematic phase is stable
betweenh=0.386 and 0.415 while the smectic-A phase oc-
curs at larger values ofh. The simulated values ofS2 in the
nematic phase are seen in Fig. 3(b) to be low compared both
to the theory and to simulation results for the more rigid
molecules discussed earlier. The later simulations of Ref.
[13] instead found, on compression, a transition from the
isotropic to a metastable glassy state, although the authors
suggested that these simulations were probably too short to
see spontaneous formation of liquid-crystalline phases. On
expansion from an initial close-packed solid structure, the
simulations of Ref.[13] found a smectic-A phase between
h=0.408 and 0.499, with no indication of a nematic phase.
However, there is still a “gap” in the simulated pressure and
density values between the isotropic and smectic phases, see
Fig. 3(a), so the existence of a nematic phase over a small
range of pressures is not ruled out.

The simulation studies of Ref.[12] concluded that the
s9,6d system does not exhibit a nematic phase and instead
undergoes a direct isotropic-smectic transition. At present,
our theory cannot rule this out.

In summary, the values of the pressure and order param-
eter predicted by the present theory are in good agreement
with simulation results over density ranges where isotropic

FIG. 2. Reduced pressure(a) and nematic order parameter(b) vs
volume fraction for(11,4) diblock chains.

FIG. 3. Reduced pressure(a) and nematic order parameter(b) vs
volume fraction for(10,5) diblock chains.
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and nematic phases are found by the simulations. While the
simulations can give only approximate estimates of the co-
existing densities at the isotropic-nematic transition, the the-
oretical results are in reasonable agreement with those esti-
mates, although the agreement deteriorates with increasing
relative size of the flexible tail. One explanation for the
theory underestimating the transition densities of flexible
chains is the fact that the approximation for the excluded
volume, in terms of monomer and dimer contributions, over-
estimates the excluded volume because it neglects simulta-

neous contacts between a pair of molecules at two or more
points along the chains[6]. Nonetheless, at present there is
no other comparable theory available for describing semi-
flexible fused-sphere chain fluids. Future efforts will focus
on improving the treatment of the excluded volume between
semiflexible chains and extending the theory to spatially
modulated phases such as smecticA.
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